• Background Image

    New York, NY

    Sports Medicine / Fitness

May 15, 2018

Sports Injuries: Treatment and Recovery with Chiro and Physical Therapy

Recovery with Chiro and Physical Therapy

Whether it’s recreational or professional sports, the possibility of sustaining injuries while playing is always present. Though contact sports like football and basketball increase the chance of getting injured, swimmers, cyclists, and golfers also have their fair share of sports injuries.

First aid is very important to keeping the pain in check and preventing further damage to the affected area. Serious injuries may need

more than just an ice pack. Some may need regular rehab sessions to bring back peak performance while the worst injuries may call for surgery.

The most common sports injuries among professionals are pulled muscles, runner’s knee, shoulder impingement, shin splints, tennis elbow, ankle sprain, and Achilles tendonitis. Though these

rarely require evasive treatment, most may require physical therapy and chiropractic intervention for treatment and recovery.

Treatment will start with questions about your medical history, a physical exam, and other tests relevant to your injury. Thorough evaluation and a correct diagnosis of the injury will also result in providing the right treatment plan.

A chiropractor will check your posture, balance, and spine. A chiropractor will help you relieve tension in your body with manual adjustments to your spine and joints. Faster recovery, improved balance, and better performance can be achieved with regular visits.

Physical therapy will provide targeted exercises to relieve pain and reduce inflammation, after which a reconditioning treatment plan will help improve range of motion, flexibility, strength, and balance. Committing to the physical therapy and rehab can get you back to your game faster and safer.

Yes, enjoying your favorite sport is a great way to keep fit and healthy. However, there are a couple of tips that you should always remember: make sure that you warm up and cool down properly, and don’t overdo yourself and listen to your body.

November 17, 2017

Running Form Analysis In NYC

Running Form Analysis Clinic in NYC

running lab nyc nikeIf you run regularly, I highly recommend having a professional running gait analysis performed. Having someone with expertise give you personalized tips can really help you to prevent injuries by improving the mechanics of your running form.

After running in a local 5K, I was entered in a drawing to win a few free sessions with a running coach. Against all odds and my previous experiences in such contests, I actually won.

Running gait analysis

When I had my running gait analyzed, I was told I took too few steps per minute. Runners should take 180 steps per minute. Elite runners have been shown to take 180 steps per minute or more naturally. This reduces the shock of the impact when the foot lands. If your foot hits the ground less frequently that means your body spends more time in the air. Your foot will then hit the ground with more force thus risking injury. Many injuries occur due to the impact of the runner’s foot with the ground. A great way to help you keep 180 steps per minute is to find some songs with 180 beats per minutes to listen to as you run.

I was also told that I needed to keep my wrists loose. There is a correlation between how relaxed your upper body is and your lower body. For example, if your shoulders are relaxed, your hips will be relaxed. If your elbows are relaxed, your knees will be relaxed. This also can help prevent injuries. Runners really need to consider the overall form of their entire body and not just the legs. Having this objectively measured by a pro really helps.

Running Biomechanics

Foot strike needs to be carefully evaluated as well. Which part of your foot hits the ground first and how does it hit? This can vary depending on if you are training for a sprint or a long-distance race. Sprinters tend to hit the ground with balls of their feet while distance runners tend to strike heel first. When the middle or heel of the foot hits first, it can help to reduce calf pain and injuries. Wherever the foot falls first, an important thing to remember is to avoid having your toes pointed outward. How your toes are pointed can be difficult for you to determine yourself so having someone else analyze this is important.

Residents of NYC can visit the Manhattan running lab to get a much more in-depth running form analysis in NYC than I had with the local running coach just running around a track. State of the art technology used there can really drill down to all the nuances of your gait. If someone can help you with the form of your foot strike and your breathing rhythms as the professionals at CLINICUBE can, you’ll be on your way to your best, injury free performances.

September 28, 2017

All About Patellar Tendonitis

Knee Pain:

The knee is one of the most vital tendon systems of our body. For athletes, especially those engaged in team sports, the health and well-being of their knee is so important. Their careers are dependent on how long their knees stay injury-free.
In sports, like volleyball and basketball which involve a lot of jumping, the knees are exposed to a myriad of injuries. One of them is patellar tendonitis, commonly known as jumper’s knee.
As its name suggests, jumper’s knee comes from “jumping”. Basketball and volleyball athletes are at risk of suffering from patellar tendonitis. When players dash and go for fast breaks, leap for rebounds and block spikes, dive for loose balls, the knee is always under duress and stress. As a result of all that activity, the patella tendon below the knee cap develops patella tendonitis.
The following are some of the symptoms that you are suffering from jumper’s knee or patellar tendonitis:
1. Gradual increase of pain in the knee with increase in level of activity
2. Patella Tendon feels tender
3. Stiffness in the tendon during morning
4. Pain gets worse whenever you jump, land, run
Jumper’s knee/patellar tendonitis can go beyond just knee pain. Additional stress on the tendon will do further damage and might lead to the whole knee being damaged for life. Athletes with severe jumper’s knee will not only be able to play at peak levels, and may have to refrain from playing again.
To treat jumper’s knee, we have the following advice:
1. Rest your injured knees and refrain from activities that would cause further stress to it.
2. Apply cold compress to the swelling and then warm compress after the swelling is reduced.
3. Always do warm-ups before any activity. Do these warm-up exercises to increase the strength of your knee.
4. Consult a professional therapist on stretching exercises, those which are specifically for the knees.
Do not let jumper’s knee end your athletic career end early, or make you stop playing the game you always loved. Visit Launchfit™ by Clinicube®and we will teach you how to overcome patellar tendonitis!
August 11, 2017

CliniCube Brings a New Concept in Health & Fitness to NYC

Dr. Noam Sadovnik announces the opening of CLINICUBE, a new concept in health, wellness and peak performance services located in a newly constructed state of the art facility at 39 West 29th St., 11th Floor.   Dr. Sadovnik, the founder and director of Chiropractic and Physical Therapy services at Launchfit™ by Clinicube®for Chiropractic & PT conceived of CLINICUBE to bring patient care and convenience to an even higher level. We are also adding several new practitioners to expand services in mind, body and fitness care.

A New Concept In Integrative Medicine

“The integrative and holistic care setting will increase patient convenience as Launchfit™ by Clinicube®adds more services. This will greatly reduce the time patients spend going from one provider to the next and will improve health care collaboration between providers,” says Dr. Sadovnik.

 

In addition to Dr. Sadovnik and associates Dr. Lauren Fries – lead chiropractor; Hector Zurita, DPT – physical therapist and Marilena Rizzo, M.S., L.AC – acupuncturist, two additional practitioners have joined Clinicube: Richard Mak, DPT – physical therapist and Nirmal Patel, MD – interventional pain management.

 

“Our list of services is growing as additional practitioners join Launchfit™ by Clinicube®to provide cutting edge health care to residents of the NOMAD district and all of NYC,” says Dr. Sadovnik. For more information or an appointment call 646.777.0916.

 

 

Launchfit™ by Clinicube® provides:

• CHIROPRACTIC & PHYSICAL THERAPY

• PHYSICAL REHABILITATION

• INTERVENTIONAL PAIN MANAGEMENT

• FUNCTIONAL MEDICINE

• COMPUTERIZED TESTING & TRAINING

• MEDICALLY SUPERVISED FITNESS

• MIND BODY MEDICINE

• PREHAB SERVICES FOR PEAK PERFORMANCE, REDUCED INJURY RISK

 

Launchfit™ by Clinicube®occupies 5,000 square feet of newly constructed space located at 39 West 29th Street, 11th floor, NYC.

March 18, 2017

New study connects running motion to ground force, provides patterns for any runner

Researchers at Southern Methodist University in Dallas have developed a concise new explanation for the basic mechanics involved in human running.

The approach offers direct insight into the determinants of running performance and injuries, and could enable the use of individualized gait patterns to optimize the design of shoes, orthoses and prostheses according to biomechanics experts Kenneth Clark, Laurence Ryan and Peter Weyand, who authored the new study.

The ground force-time patterns determine the body’s motion coming out of each step and therefore directly determine running performance. The impact portion of the pattern is also believed to be a critical factor for running injuries.

“The human body is mechanically complex, but our new study indicates that the pattern of force on the ground can be accurately understood from the motion of just two body parts,” said Clark, first author on the study and currently an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Pennsylvania.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” Clark said. “This new simplified approach makes it possible to predict the entire pattern of force on the ground – from impact to toe-off – with very basic motion data.”

This new “two-mass model” from the SMU investigators substantially reduces the complexity of existing scientific explanations of the physics of running.

Existing explanations have generally relied upon relatively elaborate “multi-mass spring models” to explain the physics of running, but this approach is known to have significant limitations. These complex models were developed to evaluate rear-foot impacts at jogging speeds and only predict the early portion of the force pattern. In addition, they are less clearly linked to the human body itself. They typically divide the body into four or more masses and include numerous other variables that are hard to link to the actual parts of a human body.

The SMU model offers new insight by providing concise, accurate predictions of the ground force vs. time patterns throughout each instant of the contact period. It does so regardless of limb mechanics, foot-strike type and running speed.

“Our model inputs are limited to contact time on the ground, time in the air, and the motion of the ankle or lower limb. From three basic stride variables we are able to predict the full pattern of ground-force application,” said Ryan, who is a physicist and research engineer at SMU’s Locomotor Performance Laboratory.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground.” added Ryan.

Current methods for assessing patterns of ground force application require expensive in-ground force platforms or force treadmills. Additionally, the links between the motions of an athlete’s body parts and ground forces have previously been difficult to reduce to basic and accurate explanations.

The researchers describe their new two-mass model of the physics of running in the article, “A general relationship links gait mechanics and running ground reaction forces,” published in the Journal of Experimental Biology.

“From both a running performance and injury risk standpoint, many investigations over the last 15 years have focused on the link between limb motion and force application,” said Weyand, who is the director of SMU’s Locomotor Performance Laboratory. “We’re excited that this research can shed light on this basic relationship.”

Overall force-time pattern is the sum of two parts

Traditional scientific explanations of foot-ground forces have utilized different types of spring and mass models ranging from complex to very simple. However, the existing models have not been able to fully account for all of the variation present in the force-time patterns of different runners – particularly at speeds faster than jogging. Consequently, a comprehensive basis for assessing performance differences, injury risks and general running mechanics has not been previously available.

The SMU researchers explain that the basic concept of the new approach is relatively simple – a runner’s pattern of force application on the ground is due to the motion of two parts of the body: the lower portion of the leg that is contacting the ground, and the sum total of the rest of the body.

The force contributions of the two body parts are each predicted from their largely independent, respective motions during the foot-ground contact period. The two force contributions are then combined to predict the overall pattern. The final prediction relies only upon classical physics and a characteristic link between the force and motion for the two body parts.

New approach can be applied accurately and inexpensively

The application of the two-mass approach is direct and immediate.

“Scientists, clinicians and performance specialists can directly apply the new information using the predictive approach provided in the manuscript,” Clark said. “The new science is well-suited to assessing patterns of ground-force application by athletes on running tracks and in performance training centers.”

These capabilities have not been possible previously, much less in the inexpensive and accurate manner that the new approach allows for with existing technology.

“The only requirement is a quality high-speed camera or decent motion sensor and our force-motion algorithms,” Clark said. “It’s conceivable that even shoe stores would benefit by implementing basic treadmill assessments to guide footwear selection from customer’s gait mechanics using the approach.”

A critical breakthrough for the SMU researchers was recognition that the mass contribution of the lower leg did not vary for heel vs. forefoot strikes and was directly quantifiable. Their efforts lead them to recognize the initial force contribution results from the quick stopping of the lower part of the leg — the shin, ankle and foot — which all come down and stop together when the foot hits the ground.

Olympic sprinters were a clue to discovery

The SMU team discovered a general way to quantify the impact forces from the large impacts observed from Olympic-caliber sprinters. Like heel strikers, the patterns of Olympic sprinters exhibit a sharp rising edge peak that results from an abrupt deceleration of the foot and lower leg. However, sprinters accomplish this with forefoot impacts rather than the heel-first landing that most joggers use.

“The world-class sprinters gave us a big signal to figure out the critical determinants of the shape of the waveform,” said Weyand. “Without their big impact forces, we would probably have not been able to recognize that the ground-force patterns of all runners, regardless of their foot-strike mechanics and running speed, have two basic parts.”

When the researchers first began to analyze the seemingly complicated force waveform signals, they found that they were actually composed of two very simple overlapping waveforms, Ryan said.

“Our computer generated the best pattern predictions when the timing of the first waveform coincided with the high-speed video of the ankle stopping on impact. This was true to within a millisecond, every single time. And we did it hundreds of times,” he said. “So we knew we had a direct physical relationship between force and motion that provided a critical insight.”


New approach has potential to diagnose injury, rehab

The SMU team’s new concise waveforms potentially have diagnostic possibilities, Weyand said.

For example, a runner’s pre-injury waveforms could be compared to their post-injury and post-rehab waveforms.

“You could potentially identify the asymmetries of runners with tibial stress fractures, Achilles tendonitis or other injuries by comparing the force patterns of their injured and healthy legs,” he said.

And while medical images could suggest the injury has healed, their waveforms might tell a different story.

“The waveform patterns might show the athlete continues to run with less force on the injured limb. So it may offer an inexpensive diagnostic tool that was not previously available,” Weyand said.

Article: A general relationship links gait mechanics and running ground reaction forces, Kenneth P. Clark, Laurence J. Ryan, Peter G. Weyand, Journal of Experimental Biology, doi: 10.1242/jeb.138057, published online 18 January 2017.

October 28, 2016

How a NYC gait analysis lab can improve your health

You’ve probably heard of gait analysis and a gait analysis lab and have a rough idea of what they are. Maybe you think it’s mostly for serious runners wanting to fine tune their technique in order to avoid injury. Or perhaps you think it’s a sales device  of high-end running stores to help them sell expensive footwear.

 

While some of this may be true, gait analysis is a whole science which involves much more than this.

 

What is gait analysis?

In essence, gait analysis is the systematic and scientific study of motion, usually human. It requires intensive observation by both the human eye and by cameras to intelligently process kinetic and kinematic data. Gait analysis should effectively measure muscle activity, body mechanics and body movement. Importantly, it should also deliver findings and advice in a clear and understandable way, as we do at The Center.

 

How has gait analysis developed?

With the rapid pace of technological development, gait analysis as a field has enjoyed significant improvement. Gait analysis has come a long way since its origins concentrating on animals and the first scientific papers in the 1890s, looking at the bio-mechanics of human gait under loaded and unloaded conditions.

Today, thanks to major continuing developments in photography and cinematography technologies, there is unprecedented visual access and bio-mechanical intelligence in how our bodies move and how we record related data.

 

What happens during a visit to NYC gait analysis lab?

Most gait analysis labs have several cameras, including infrared cameras, placed around a treadmill and connected to computers. As a patient, you will have markers placed on various points of the body, enabling trajectories to be calculated and detailed evaluations given of each functioning joint. You will be given a series of physical tests for observations to be made and data to be collected.

 

But remember, every gait analysis is likely to be slightly different. There are many variables.

Gait Analysis NYC | Running Lab NYC where can i get a gait analysis?

 

RunningLab at Launchfit™ by Clinicube®

At our running lab and gait analysis in Manhattan, we have state-of-the-art technologies including the OptoJump Next. This is an innovative analysis and measurement system enabling the measurement of ‘flying’ and ground contact intervals.

 

Athlete performances can be evaluated and periodically monitored, building intricate databases to check progress or help develop rehabilitation plans. At The Center, our computer-assisted functional evaluation and training programs ensure accurate results.

 

Is gait analysis for you?

While it is commonly used to support athletes and runners, gait analysis can offer an effective insight for those undergoing rehabilitation after an accident or injury, or anyone with posture or movement issues.

 

Gait analysis is bigger than us

As a science, it’s worth remembering that gait analysis also has much wider and deeper applications for improving health and making findings. It can be used to inform a range of medical diagnostics: providing options for the treatment of conditions such as cerebral palsy; potentially helping a patient rediscover who they are, should they ever lose their memory; and offering us a greater understanding of movement outside our species).

 

If you’d like to discuss how gait analysis can improve your health today, contact us at Launchfit™ by Clinicube®for more information or sign up online right away by clicking here.